Probucol modulates oxidative stress and excitotoxicity in Huntington's disease models in vitro
نویسندگان
چکیده
Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disease characterized by symptoms attributable to the death of striatal and cortical neurons. The molecular mechanisms mediating neuronal death in HD seem to be related to oxidative stress, excitotoxicity and misbalance in energetic metabolism. In this study we evaluated the potential relationship between energetic impairment, excitotoxicity and oxidative stress in rat striatal slices exposed to quinolinic acid (QA; as an excitotoxic model), 3-nitropropionic acid (3-NP; as an inhibitor of mitochondrial succinate dehydrogenase), as well as a combined model produced by the co-administration of these two toxins at subtoxic concentrations. We took advantage of the direct antioxidant/scavenger properties of Probucol in order to investigate the role of reactive oxygen species (ROS) in mediating the toxicity of both compounds alone or in association. Experiments with MK-801 (a NMDA type glutamate receptor antagonist) and succinate (an energy precursor agent) were also performed in an attempt to better comprehend the mechanisms of damage and neuroprotection. QA (1 mM), 3-NP (1 mM) and QA plus 3-NP (0.1 mM of both) significantly induced mitochondrial dysfunction and produced an increase in ROS generation, as well as a significant increase in lipid peroxidation in striatal slices. Probucol (10 and 30 μM) prevented ROS formation and lipid peroxidation in all used models, but did not protect against the mitochondrial dysfunction induced by 3-NP (only by QA or QA plus 3-NP). Sodium succinate (1 mM) protected the striatal slices only against 3-NP-induced mitochondrial dysfunction. On the other hand, MK-801 protected against mitochondrial dysfunction in all used models. Our data suggest that the two studied toxic models (QA and 3-NP) or the combined model (QA plus 3-NP) can generate complex patterns of damage, which involve metabolic compromise, ROS formation, and oxidative stress. Moreover, a partial inhibition of SDH by subtoxic 3-NP and moderate excitotoxicty by subtoxic QA are potentiated when both agents are associated. The toxic action of QA plus 3-NP seems to be involved with Ca2+ metabolism and ROS formation, and can be prevented or attenuated by antioxidant/scavenger compounds and NMDAr antagonists.
منابع مشابه
Levodopa-Induced Dyskinesia Is Related to Indirect Pathway Medium Spiny Neuron Excitotoxicity: A Hypothesis Based on an Unexpected Finding.
A serendipitous pharmacogenetic finding links the vulnerability to developing levodopa-induced dyskinesia to the age of onset of Huntington's disease. Huntington's disease is caused by a polyglutamate expansion of the protein huntingtin. Aberrant huntingtin is less capable of binding to a member of membrane-associated guanylate kinase family (MAGUKs): postsynaptic density- (PSD-) 95. This leave...
متن کاملProbucol Increases Striatal Glutathione Peroxidase Activity and Protects against 3-Nitropropionic Acid-Induced Pro-Oxidative Damage in Rats
Huntington's disease (HD) is an autosomal dominantly inherited neurodegenerative disease characterized by symptoms attributable to the death of striatal and cortical neurons. The molecular mechanisms mediating neuronal death in HD involve oxidative stress and mitochondrial dysfunction. Administration of 3-nitropropionic acid (3-NP), an irreversible inhibitor of the mitochondrial enzyme succinat...
متن کاملHuntington's disease: progress and potential in the field.
While the first description of Huntington's disease was reported over a century ago, no therapy exists that can halt or ameliorate the inexorable disease progression. Tremendous progress, however, has been made in significantly broadening the understanding of pathogenic mechanisms in this neurological disorder that may eventually lead to successful treatment strategies. Huntington's disease is ...
متن کاملIntegrative hypothesis for Huntington's disease: a brief review of experimental evidence.
Huntington's disease (HD) is a demential, neurodegenerative inheritable disease affecting middle-aged patients. HD is characterized by uncontrolled choreiform movements, psychiatric symptoms and cognitive decline. Histopathological changes in HD brains reveal a considerable damage to basal ganglia, particularly affecting middle-sized spiny neurons from the caudate-putamen region. Neurochemical ...
متن کاملProbucol ameliorates renal injury in diabetic nephropathy by inhibiting the expression of the redox enzyme p66Shc
AIMS Probucol is an anti-hyperlipidemic agent and a potent antioxidant drug that can delay progression of diabetic nephropathy (DN) and reverses renal oxidative stress in diabetic animal models; however, the mechanisms underlying these effects remain unclear. p66Shc is a newly recognized mediator of mitochondrial ROS production in renal cells under high-glucose (HG) ambience. We previously show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain Research Bulletin
دوره 87 شماره
صفحات -
تاریخ انتشار 2012